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Abstract. Hemivariational inequalities can be considered as a generalization of variational inequal-
ities. Their origin is in nonsmooth mechanics of solid, especially in nonmonotone contact problems.
The solution of a hemivariational inequality proves to be a substationary point of some functional,
and thus can be found by the nonsmooth and nonconvex optimization methods. We consider two type
of bundle methods in order to solve hemivariational inequalities numerically: proximal bundle and
bundle-Newton methods. Proximal bundle method is based on first order polyhedral approximation
of the locally Lipschitz continuous objective function. To obtain better convergence rate bundle-
Newton method contains also some second order information of the objective function in the form of
approximate Hessian. Since the optimization problem arising in the hemivariational inequalities has
a dominated quadratic part the second order method should be a good choice. The main question in
the functioning of the methods is how remarkable is the advantage of the possible better convergence
rate of bundle-Newton method when compared to the increased calculation demand.
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1. Introduction

Hemivariational inequalities introduced by Panagiotopoulos are generalizations of
variational inequalities. By means of them, problems involving honmonotone and
multivalued constitutive laws and boundary conditions can be defined mathemati-
cally. In many cases hemivariational inequalities can be reformulated as substation-
ary point problems of the corresponding nonsmooth nonconvex energy functionals.
For mathematical theory and the applications of hemivariational inequalities we
refer to [22, 23].

The aim of this paper is to apply nonsmooth nonconvex optimization meth-
ods for the numerical solution of hemivariational inequalities and analyse their
efficiency. As a typical example of hemivariational inequalities we consider a lam-
inated composite structure under loading when the binding material between lami-
nae obeys a nonmonotone multivalued law. This kind of a mechanical problem has
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been investigated numerically in [21, 26]. There it has been replaced by a sequence
of convex subproblems which have been solved by using convex minimization
methods.

The discretization of the considered problem is realized by the finite element
method scheme for nonmonotone multivalued differential inclusions presented in
[17-19]. This scheme has been proved to be mathematically well-posed: stable and
convergent.

Bundle methods are at the moment the most promising methods for nonsmooth
optimization. Their origin is the classical cutting plane method of [4] and [7] and
they are based on the piecewise linear approximation of the objective function. Due
to the numerical experiments the proximal bundle methods (see [10, 25, 16]) seem
to work in the most efficient and reliable way. They can be called also to diagonal
variable metric methods, since a stabilizing quadratic term in form of diagonal
matrix was added to the polyhedral approximation in order to accumulate some
second order information about the curvature of the objective function.

However, the development of ‘real’ second order method has been fascinat-
ing the researchers of nonsmooth optimization during its whole history. Several
attempts have been done in order to exploit the second order subderivative informa-
tion. Already in his pioneering work [11] Lemaréchal derived a version of variable
metric bundle method utilizing the classical BFGS secant updating formula from
smooth optimization. Due to the disappointing numerical results in [12] this idea
was buried nearly for two decades. Several modifications of the variable metric
concepts have been proposed for example in [3, 6, 13, 20]. According to very
limited numerical experiments (see for example [6]) it seems that the variable
metric bundle methods works fairly well. However, when proportion the results
to the extra computational efforts needed with the full matrix algebra they do not
offer substantial advancement in numerical solution process.

More recently a new second order approach has been proposed in [15], where
the bundle-Newton method was introduced. The main difference compared to the
earlier methods was the inclusion of second order information directly to the model,
in other words the piecewise linear model was replaced by piecewise quadratic
model. In numerical tests of [15] it turns out to be very effective for quadratic type
of problems.

The aim of this paper is to compare the proximal bundle method and the bundle-
Newton method in solving hemivariational inequalities. Since the optimization
problem arising in the solution of hemivariational inequalities has a dominated
guadratic part the second order method should be a good choice. The main ques-
tion in the functioning of the method is how remarkable is the advantage of the
possible better convergence rate of the bundle-Newton method when compared to
the increased calculation demand. The numerical results indicate the superiority of
the bundle-Newton method for the problems having a quadratic nature.

The paper is organized as follows. In Section 2 we introduce the considered op-
timization problem and give some definitions needed in continuation. The Sections
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3 and 4 are devoted to the proximal bundle method and bundle-Newton method,
respectively. In Section 5 the test hemivariational inequality problem is introduced
and finally in Section 6 we give some numerical results.

2. Nonsmooth and nonconvex optimization problem

We consider the following nonsmooth and nonconvex optimization problem

minimize  f(x)
subjectto x € K,

(P)

where the objective functiorf from R" to R is supposed to be locally Lipschitz

continuous function. The feasible géthas a more specific structure, i.e.
K={xeR"|x <x<x",

wherex! and x* are the lower and upper bounds for variables, respectively. We
suppose that at each € K we can evaluate the function valyé&(x) and an
arbitrary subgradieng(x) from the subdifferential of Clarke (see [5])

Af (x) = conv{lim V£ (x") | x' — x andV f(x') exists.

Thenormal coneof K at x € K can be defined (see [16]) by

Ng(x) = cl Ux ddg (x) }

2=>0
wheredg : R" — R is thedistance functiof K, i.e.
dg(x) =inf{|lx —c|l | c € K}.

DEFINITION 1. Suppose thaf : R" — R is locally Lipschitz continuous. Then
x* is called a substationary point of the problem (P) if

0€ df(x*) + Nk (x"). 1)
Now we can formulate the following necessary optimality condition.
THEOREM 1. Every local minimizer of the problem (P) is substationary.

For the proof we refer to [16].

In the following sections we describe two methods: proximal bundle method
and bundle-Newton method for finding local minimizers (and thus substationary)
points of the problem (P). For the convergence of the methods we need the follow-
ing semismoothness assumption due to [2].
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DEFINITION 2. The functionf : R" — R is said to be upper semismooth, if
for anyx € R",d € R" and sequenceg; C R" andy; C (0, co) satisfying
gi € 3f (x +1,d) and¢; | O, one has

limsupg!d > liminf[ f (x +t:d) — f(x)1/t;. (2)

i—00

3. Proximal bundle method

In this section we shortly describe the ideas of the proximal bundle method for
nonsmooth and nonconvex minimization. For more details we refer to [10, 25, 16].

3.1. DIRECTION FINDING

Our aim is to produce a sequerfog};>; C R" converging to some local minimum
of the problem (P). Suppose that the starting paints feasible and at théth
iteration of the algorithm we have the current iteration paiptand some trial
pointsy; € R" (from past iterations) and subgradiegts € 9f(y;) for j € Ji,
where the index sef;, is a nonempty subset §1, . . ., k}.

The idea behind the proximal bundle method is to approximate the objective
function below by a piecewise linear function, in other words, we repfabg so
calledcutting-plane model

fex) = max(f (vj) + g (x = )}, 3
which equivalently can be written in the form

fex) = max{(f (v) + g (v = x0) — o}, @)
with thelinearization error

of = fa) — f(y)) — &) (e —y;) forallje . (5)
Note, that in convex case the subdifferential can be rewritten as (see [16])

Af(x) ={gx) e R"| f(y) = f(x) +gx)(y —x) forall y e R"}.
Then it is easy to prove that

felx) < f(x) forallx e R" and of >0 forallje J. (6)
In other words, iff is convex, then the cutting-plane modklis an under estimate
for f and the nonnegative linearization ermjr measures how good an approx-
imation the model is to the original problem. In nonconvex case these facts are
not valid anymorea§ may have a tiny (or even negative) value, although the trial
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pointy; lies far away from the current iteration pointand thus the corresponding
subgradientg; is useless. For these reasons the linearization efj‘rdm replaced
by so calledsubgradient locality measufgf. [8])

B} == max{laf], y (s5)?%), ()
wherey > 0 is thedistance measure parametgr = 0 if f is convex) and
k-1
sh =l = yill+ D lxia — xl 8)
i=]
is thedistance measurestimating
llxe — will )

without the need to store the trial points. Then obviouslyﬁ.’; > O0forall j € J;
and minc fi(x) < f(x), since

min fi (¥) < fuli) = f(0) — MaxB; < f (). (10)

In order to calculate the search directidp € R" we replace the original
problem (P) by the cutting plane model

min?mize file +d) + Jud™d cP)
subjectto x; +d € K,
where the regularizing quadratic penalty tern2id,d”d is added to guarantee
the existence of the solutiosi, and keep the approximation local enough. The
weighting parameter;, > 0 was added to improve the convergence rate and to
accumulate some second order information about the curvatufeacdundyx;. It
was adapted from the proximal point algorithm by [24] and [1] and was first time
used in [10] and [25].

Notice, that the problem (CP) still is a nonsmooth optimization problem. How-
ever, due to piecewise linear nature it can be rewritten as a (smooth) quadratic
programming subproblem finding the solutiafi, v;) € R**? of

minimize v + Jud’d
subjectto —pf +¢ld <v foralljeJ; and x+deK.

(QP)
3.2. LINE SEARCH

In the previous section we calculated the search directjorNext we consider
the problem of determining the step size into that direction. We assume that
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(0,1/2), mg € (mz,1) andt € (0, 1] are fixed line search parameters. First we
shall search for the largest numbére [0, 1] such thatt > 7 and

O+ tid) < fa) +mytfv, (11)
whereu, is the predicted amount of descent and it holds
v = frlu +d) — f) <0
due to (11). If such a parameter exists we takeng serious step
Xpa1 =X+ pde and Y1 = Xy
Otherwise, if (11) holds but & ¥ < 7 then ashort serious step
X1 o= X+ tpd; and  ypq o= Xp + frdy
is taken and if* = 0 we take awll step
Xpyr=xpand ey = xg + tgdy,

wheretk > t¥ is such that

—BT + gl ade = myyr. (12)

In long serious step there occurs a significant decrease in the value of the ob-
jective function. Thus there is no need for detecting discontinuities in the gradient
of f, and so we seg; 1 € 3f (xxy1). In short serious steps and null steps there
exists discontinuity in the gradient gf. Then the requirement (12) ensures that
x; and yx1 lie on the opposite sides of this discontinuity and the new subgra-
dient g,,1 € 3f(yry1) Will force a remarkable modification of the next search
direction finding problem. In what follows we are using the line search algorithm
presented in [16]. The convergence proof of the algorithm is assyitiete upper
semismooth (see (2)).

The iteration is terminated if

v = —&g, (13)

wheree, > 0 is a final accuracy tolerance supplied by the user.

3.3. WEIGHT UPDATING

One of the most important questions concerning proximal bundle method is the
choice of the weight;;. The simplest strategy might be to keep it constgnt=

urix. This, however, leads to several difficulties. Due to Theorem 4 we observe the
following:
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If uy;, is very large, we shall have smaii,| and||dy ||, almost all steps are serious
and we have slow descent.

If uz;, is very small, we shall have largey| and||di ||, and each serious step will
be followed by many null steps.

Therefore, we keep the weight as a variable and update it when necessary. For
updatingu; we use the safeguarded quadratic interpolation algorithm due to [10].

4. Bundle-Newton method

Next we describe the main ideas of the second order bundle-Newton method. For
more details we refer to [15].

4.1. DIRECTION FINDING

We suppose that at eaghe K we can evaluate, in addition to the function value
f(x) and an arbitrary subgradiegtx) € af(x), also amm x n symmetric matrix
G (x) approximating the Hessian matri¥® f (x). For example, at the kink point
of piecewise twice differentiable function we can tak¢y) = V2 f(x), wherex
is ‘infinitely close’ toy.

Instead of piecewise linear cutting-pane model (3) we introduce a piecewise
guadratic model of the form

. 1
Je(x) = max {f(yj) +el(x—yp)+ EQ'/(X - ) Gjx - y/')} . (14)
whereG; = G(y;) andp; € [0, 1] is some damping parameter. The model (14)
can again equivalently be written as
r T 1 T k
Je(x) = max {f(xk) g = x) + 500 —x)" Gj(x —x) — O‘j}
(15)

and for allj € J, the linearization error takes now the form
k T 1 T
of = fO) = f) — & Ok — yj) — EQj(xk -y Gj(xk —yj). (16)

Note that now even in the convex casﬂiemight be negative. Therefore we replace
the linearization error (16) again by the subgradient locality measure (7) and we
remain the property (see [15])

min fi (x) < f(xp). (17)
xekK
The search directiod, € R" is now calculated as the solution of

minimize  fi(x; + d)

CN
subjectto x; +d € K. (CN)
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Note, that since the model already has second order information no regularizing
guadratic terms are needed like in (CP). The problem (CN) is transformed to a
nonlinear programming problem, which is then solved by a recursive quadratic
programming method (see [15]). If we denote

gh =g +0;Gj(xi—y)),

this procedure leads to a quadratic programming subproblem finding the solution
(dk, V) € R+1 of

minimize v+ 1d" Wid

N
subjectto —B% + (¢5)7d <v foralljeJ and x +d €K, (QN)

where

Wy = Z )»l;ileGj

J€Jk—1

and 2! for j € J,_; are the Lagrange multipliers of (QN) from the previous
iterationk — 1. In calculationsW, is replaced by its positive definite modification,
if necessary.

4.2. LINE SEARCH

The line search operation of the bundle-Newton method is following the same
principles than in Section 3.2 for proximal bundle method. The only remarkable
difference occurs in the termination condition for short and null steps, in other
words (12) is replaced by two conditions

—131]({111 + (gllfﬁ)Tdk = MRy (18)
and

I Xk+1 — Yitall < Cs, (19)

whereCs > 0 is a parameter supplied by the user.
The bundle-Newton method is using the line search algorithm presented in [15].
The convergence proof of the algorithm is assunfied be upper semismooth (see

(2)).

5. Formulation of the problem
5.1. CONTINUOUS PROBLEM

We consider a two-dimensional laminated composite structure consisting of two
elastic laminae and an interlayer binding material under loading (see Figure 1).
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Figure 1. Laminated composite structure under loading.
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Figure 2. Nonmonotone adhesive force between laminae.

The mechanical behaviour of the binding material, the interlaminar bonding forces
versus the corresponding relative displacements of the laminae, is depicted by
Figure 2. This relation is typically nonmonotone and multivalued. Therefore, this
kind of mechanical problems lead to the hemivariational inequalities or in the en-
ergy formulation to the substationary point problems of nonconvex, nonsmooth
functionals. The similar mechanical structures have been investigated in [21, 26].
Due to the symmetry of the structure and by assuming that the forces applied to
the upper and lower part of the structure are the same it is enough to study the upper
lamina. Next, we formulate mathematically the problem. We denote by R? the
upper lamina in its undeformed state. The Lipschitz boundfaof ©2 consists of
four nonoverlapping open subsdtg, I',, I's andT'4. We denote by = (o,».,-),.z,,.:1

the stress tensot, = (sij)szl the strain tensom; = (u,-)l?:l the displacement,
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n = (n;)2_, the outward unit normal vector tb andS = (S; = o;;n;)%, the
boundary force.

Assuming that the deformations are small the lamina obeys the Hooke’s law of
form

1 Buk Bul
oij = Cijuen(u), where eyu) = > <8—x, + a_xk) (20)

andC = (C,».,-k,),.z,,.’k,l:l is the elasticity tensor satisfying the usual symmetry and
ellipticity conditions. The equation of the equilibrium statedfs as follows:

Oij,j = 0 in Q, =12 (21)

since there are no volume forces.
Next, we define the boundary conditions. Dnwe have given displacements

u(x) =0 only (22)
and on both F andrI'; given boundary forces

S(x) = (0, F) onT,, (23)
S(x)=0 onTs, (24)

whereF is a constant force.
Furthermore, o’y we have in the tangential direction a given boundary force

S1(x) =0 onl'y. (25)

On the other hand, due to the binding interlayer material it holds a honmonotone,
multivalued boundary condition (see Figure 2) expressed by means of the subdif-
ferentiald; of a locally Lipschitz functionj

—S2(x) € 3j (u2(x)) onTy, (26)
and because of the nonpenetration of the laminae a unilateral boundary condition
Us = 0 on Iy (27)

in the normal direction. Note that we have to scale g thex;-axis of the graph
in Figure 2 in order to get the nonmonotone law of (26), because in Figure 2 we
have relative displacements of the laminae.

By employing Green—Gauss theorem and taking into account both the equilib-
rium equation (21) and the boundary conditions (22)—(27) we obtain the following
hemivariational inequality: Find € K such that

a(u,v—u)+/ J(uz; vz—uz)dFQ/ F(vo —up)d’ Yve K, (28)
I'g I'2
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whereK is a set of kinematical admissible displacements defined by
K={veX:vy>00nTy}, (29)
X ={ve(HYQ)?:v=0o0nTy} (30)

(HY(2) denotes the Sobolev spacg),is the generalized directional derivative of
j anda the bilinear form of the linear elasticity defined by

a(u,v) = / Cijnreij(u)en (v)dSQ. (31)
Q

Due to the symmetry of the bilinear formthe potential energy of the consid-
ered mechanical system has the form:

Flu) = %a(u,u) +/

(ug)dl — / FuydT. (32)
Iy Ir's

Then, we can formulate the following problem: Finde K such thatu is a
substationary point (cf. (1)) of on K, i.e.

0€df(u) + Nk (u), (33)

where Nk (1) is the normal cone to the nonempty, closed and conveXsatu.

It can be shown that the problem (28) has at least one solution (see [22]), and that
the solutions of the inclusion (33) are also the solutions of the inequality (28) (see
[19]).

5.2. DISCRETE PROBLEM

We apply the finite element approximation scheme developed in [17, 18}. het

a discretization parameter related to the mesh size of the triangufatioh 2 (see
Figure 3). The seK is approximated by the set of piecewise linear functions over
the triangulatiorr;, defined by

Ky, ={veX,: vo>0o0nTy}, (34)

X, = {v e (C(Q)%: vy € (PL(T)?VT € T,,v=0o0nTy}. (35)

For the approximation of the bilinear formand the boundary integrﬁL2 F(vp—
uy)dI’ we use appropriate numerical integration formulae (this is standard in the

finite element method). The nonmonotone term in (28) is approximated by the
following numerical integration formula

/ JO (2 va — u)dT 2 Y ¢ o (ua(x;); va(xi) — uz(x,)), (36)
Iy

iel

where{x; };¢; is the set of the nodal points of the triangulatignon 'y and{c;};<;
are the coefficients of the integration formula.
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Figure 3. 32x4 triangulation7;, of Q.

Let us make the identificatiolx;, with the corresponding subset &, i.e.
the displacement functionis identified with the displacement vector of the nodal
points ¢ is the number of the nodal points). Then the discrete problem in the matrix
form is as follows: Find: € K} such that

WA —u)+ Y e —u) > F'(w—u) YveKk, (37)

iel

whereA is the stiffness matrix of the structurg,the (discrete) load vector arid
the set of the indices corresponding to #hedisplacements of the nodal points on
Iy.

Then we can formulate the discrete substationary point probler orrind
u € K; such that

O0e th(u) + NKh (Lt), (38)
where
fr(u) = %uTAu + Zc,»j(u,») — FTu. (39)

iel

Because of Corollary 1 of Proposition 2.3.3 in [5] and the tejig), i € I, are
independent of each other we have that

fu(u) = Au+ Y cidj(u;) — F. (40)

iel

Now it holds that every solution of (38) is a solution of the problem (37) (see [19]).
Also due to the results in [18, 19] we know that the discrete problem (38) is solv-
able and its solutions converge in subsequences to the solutions of the continuous
problem (33).

REMARK . The functionalf, is upper semismooth. Indeed, letd € R? be
given. From Definition 2 of the upper semismoothness we see that it is enough to
study the restriction off, onto the lineL = {u + td :t € R}, on which f}, is
smooth except finite number of points (cf. (39) and Figure 2¥;,If is smooth at
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u, it is smooth also on some small (one-dimensional) neighborhoadamid the
condition

limsupg’d > liminf[f (x + t;,d) — f(x)1/t; (41)
is trivially satisfied. On the other hand, jf,|; is nhonsmooth in, there exists
small neighborhood af in which u is the only nonsmooth point. Thereforg,|,
is continuously differentiable in this set except at the pairdnd the classical
one-sided derivatives exist aimplying (41).

Since the nonlinear behaviour and the constraints of the problem have an effect
only on thex,-displacements on the nodes By, we can make our computation
much more effective by applying the method of condensation of unknowns. As-
suming thatn components corresponding to the index Bedre listed first, we
have the following decomposition of the matixand the vectorg” andu

_ All A12 _ Fl _ l/tl
A_<A21A22) F_<F2 “= M2 ’
where Ay is anm x m matrix andF*, ul € R™. Then the elimination ofi?(e
RZ—™) from (37) leads to the following discrete potential functional

. 1 . " .
Fuu®) = S@HT Aut+ ) Jerj (@h) — (F)Tu, (42)

i=1

whereA = A;1 — A12(A2) 1A, called the Schur complement afd= F! —
A12(A2) 1 F2. Hence, the eliminated substationary point problem is formulated as
follows: Findu® € K, such that

0e Aut+ )" cidj (b)) — F + Nk, (u), (43)

i=1

whereK, is interpreted as a set &f".

6. Numerical results

The optimization algorithms has been implemented in Fortran 77 and the test
runs have been performed on an HP9000/J280 (180 MHz) computer. The tested
optimization codes are presented in Table 1.

All the codes are utilizing the subgradient aggregation strategy of [8] to keep
the storage requirements bounded. The code PB is employing the quadratic solver
QPDF4, which is based on the dual active set method derived in [9], while the codes
PBL and BNL are using the solver ULQDF1 implementing the dual projected
gradient method proposed in [14].
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Table 1. Tested codes and software

Code Software Package Author(s) Method

PB NSOLIB Makela Proximal bundle
PBL UFO LukSan &Vicek Proximal bundle
BNL UFO LukSan &VIeek Bundle-Newton

Table 2. Eliminated with discretization 16& 2

Load=26 200 kN/r& Load=27 000 kN/r&
Code Ni Nf CPU f Ni Nf CPU f

PB 1942 2209 10.76 —0.830188 1698 8614 15.74 —8.127245
PBL 207 210 1.13 -0.830189 1421 1443 3.80 —8.127215
BNL 4 5 0.69 -0.830189 23 24 0.81 —8.127245

The above optimization codes have been applied to the mechanical structure
of Figure 1 under eleven constant loadings=R0 000, 21 000, 22 000, 23 000,
24000, 25000, 26 200, 27 000, 28 000, 29 000, 30 000 KN/m calculation we
have used the incremental procedure: the loading of the structure is increased uni-
formly and as an initial guess for the solution of the next load it is used the solution
of the previous load. The bigger increment from 25 000 kiton26 200 kN/m is
due to the fact that the structure is very sensitive to the increase of the loading be-
tween 25 000-27 000 kN/frwhere the partial (branches B—G in Figure 2) and the
complete delamination (branch G—H in Figure 2) take place. With the load 26 200
kN/m? we can illustrate the case in which only the partial delamination occurs. We
have applied the plane stress model with the elasticity modElus 1.378 - 108
kN/m?, the Poisson’s ratio = 0.3 and the thickness= 5 mm.

The calculated results with different discretizations are presented in Tables 2—6,
in which Ni denotes the number of iterations, Nf denotes the number of objective

Table 3. Eliminated with discretization 32 4

Load=26 200 kN/r& Load=27 000 kN/rA
Code Ni Nf CPU f Ni Nf CPU f

PB 2784 8627 48.45 —1396062 1248 4715 23.34 —15.21955
PBL 426 434 3.15 -0.871201 3007 3063 14.16 —15.21929
BNL 13 14 1.61 -0.871203 16 17 1.70 —15.21955
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Table 4. Eliminated with discretization 6% 8

Load=26 200 kN/r& Load=27 000 kN/r&
Code  Ni Nf CPU f Ni Nf CPU f
PB 4053 13480 198.33 —170029F 1909 7411 107.00 —18.45613
PBL 799 810 31.23 —0.884754 6131 6255 85.33 —18.45483
BNL 15 16 2471 —0.884754 14 15 24.67 —18.45613

Table 5. Eliminated with discretization 128 16

Load=26 200 kN/rf Load=27 000 kN/rf
Code Ni Nf CPU f Ni Nf CPU f

PB 6414 23681 1372.03 —17.93623 3073 12287 939.48 —-19.45147
PBL 184 188 551.16 —0.809380* 11653 11875 873.10 —1944819*
BNL 17 19 552.69 —-0.888642 14 15 557.94 —19.45147

function (and also subgradient) evaluations, CPU the used total computer time in
seconds and is the objective function value at termination. Note that the elim-
ination, the computation of the Schur complemdnand the new load vectaF,

for the discretization 1& 2, 32 x 4, 64 x 8 and 128x 16 is taking about 0.67,

1.35, 23.1 and 545.0 seconds, respectively. The stopping criterions are chosen to be
comparable, in other words the relative accuracy in the optimal objective function
value is about 6 digits.

From the numerical results in Tables 2—6 we can conclude the superiority of
the bundle-Newton code BNL. In all cases it used less computing resources and
found the local minimum in the most reliable way. Due to the matrix operations
the individual iteration is more costly than in proximal bundle methods. However,
the total amount of iterations stays very low, and thus the used CPU time of BNL
is always less than with the other codes.

Table 6. Not eliminated with discretization 32 4

Load=26 200 kN/r& Load=27 000 kN/rA
Code Ni Nf CPU f Ni Nf CPU f

PB 4458 4474 156.97 —0.880013 40112 40128 1458.51 —15.22886
PBL 2957 3004 40.96 —0.880011 22606 22987 312.08 —15.21907*
BNL 10 12 12.27 —0.880022 14 17 17.79 —15.22891
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Table 7. Average error of the normal displacementslonby BNL

Load=26 200 kN/r& Load=27 000 kN/rA

Discretization (Error in mm) (Error in mm)
16 x 2 0.027 2.7
32x4 0.0094 1.0
64 x 8 0.0026 0.24

128x 16 * *

Note, that the iteration number and the function evaluations of BNL do not
depend on the dimension of the problem. On the other hand, when the size of
problem is doubled, BPL needed about two times and PB about 1.6 times more
iterations and function evaluations.

When comparing the CPU times versus discretization the behaviour is nonlinear
and the multiplier is growing exponentially. We have to remember, that especially
in the large problems the elimination is taking most of the time and the differences
do not seem to be so remarkable. For example for the discretizatiox 188the
optimization time of BNL is only about 2% of the total time.

By comparing the Tables 3 and 6 we can see the influence of the elimination; the
solution of the problem without elimination is taking nearly ten times more CPU
time than the eliminated one. Note that especially for the proximal bundle methods
the elimination is essential.

Although the codes PB and PBL are realizations of the same method, the dif-
ference in their functioning is remarkable. PBL is clearly more effective when
comparing the function evaluations and CPU times. However, it has slight diffi-
culties to reach the desired accuracy in larger problems (see the function values
denoted by in Tables 5-6). Notice also, that PB converges to the different local
minimum with the load 26 200 kN/fn(see the function values denoted $yn
Tables 3-5). When we changed the starting point to be zero in all the components
it found the same optimum as the other codes. This behaviour is due the fact that
the delamination takes place between the loads 25 000-27 000°kNaking the
structure very unstable and sensitive to the increase of the load.

In Table 7 we have listed the average errors of the normal displacements on
I", with the loads 26 200 kN/fand 27 000 kN/rh obtained by BNL. As an exact
solution it is used the solution obtained by the discretization £28. Table 7
indicates that the applied approximation scheme has a very good convergence rate
and the results calculated by BNL are reliable.

In Figures 4 and 5 it is presented the normal displacements of the upper lamina
(the relative displacements of laminae are twice larger) and the binding forces
between laminae. Further, Figure 6 illustrates the progress of delamination: With
the load 23000 kN/mthere is no damage of the binding material, all the nodes
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Figure 4. Normal displacements of the interface of the upper lamina.
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Figure 5. Nonmonotone adhesive force between laminae.

are on the branch A-B. The partial delamination occurs when the load is increased
to 26 200 kN/m, some of the nodes are on the branch C-D, and the complete
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delamination when the load is greater than 27 000 k\most of the nodes are on

the branch G-H.
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Figure 6. Progress of delamination.

7. Conclusions

The solution of a hemivariational inequality can be found as a substationary point
of some nonconvex functional being composed of a dominating quadratic part and
a nonsmooth piecewise quadratic part. We have tested the functioning of different
nonconvex and nonsmooth optimization methods in the solution of a laminated
composite structure under loading when the binding material between laminae
obeys a nonmonotone multivalued law.

Due to the strong quadratic nature of this kind of problem, the bundle-Newton
method based on the second order piecewise quadratic model proves to be superior
when compared to proximal bundle method based on the first order polyhedral
approximation. Bundle-Newton method was clearly faster and more reliable, and
what is best, the iteration number and the function evaluations of bundle-Newton
method do not depend on the dimension of the problem. The same trend can be
seen also in the academic tests of [15].
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