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Abstract. Hemivariational inequalities can be considered as a generalization of variational inequal-
ities. Their origin is in nonsmooth mechanics of solid, especially in nonmonotone contact problems.
The solution of a hemivariational inequality proves to be a substationary point of some functional,
and thus can be found by the nonsmooth and nonconvex optimization methods. We consider two type
of bundle methods in order to solve hemivariational inequalities numerically: proximal bundle and
bundle-Newton methods. Proximal bundle method is based on first order polyhedral approximation
of the locally Lipschitz continuous objective function. To obtain better convergence rate bundle-
Newton method contains also some second order information of the objective function in the form of
approximate Hessian. Since the optimization problem arising in the hemivariational inequalities has
a dominated quadratic part the second order method should be a good choice. The main question in
the functioning of the methods is how remarkable is the advantage of the possible better convergence
rate of bundle-Newton method when compared to the increased calculation demand.

Key words: Bundle methods, Hemivariational inequalities, Nondifferentiable programming, Non-
monotone contact problems, Substationary points

1. Introduction

Hemivariational inequalities introduced by Panagiotopoulos are generalizations of
variational inequalities. By means of them, problems involving nonmonotone and
multivalued constitutive laws and boundary conditions can be defined mathemati-
cally. In many cases hemivariational inequalities can be reformulated as substation-
ary point problems of the corresponding nonsmooth nonconvex energy functionals.
For mathematical theory and the applications of hemivariational inequalities we
refer to [22, 23].

The aim of this paper is to apply nonsmooth nonconvex optimization meth-
ods for the numerical solution of hemivariational inequalities and analyse their
efficiency. As a typical example of hemivariational inequalities we consider a lam-
inated composite structure under loading when the binding material between lami-
nae obeys a nonmonotone multivalued law. This kind of a mechanical problem has
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been investigated numerically in [21, 26]. There it has been replaced by a sequence
of convex subproblems which have been solved by using convex minimization
methods.

The discretization of the considered problem is realized by the finite element
method scheme for nonmonotone multivalued differential inclusions presented in
[17–19]. This scheme has been proved to be mathematically well-posed: stable and
convergent.

Bundle methods are at the moment the most promising methods for nonsmooth
optimization. Their origin is the classical cutting plane method of [4] and [7] and
they are based on the piecewise linear approximation of the objective function. Due
to the numerical experiments the proximal bundle methods (see [10, 25, 16]) seem
to work in the most efficient and reliable way. They can be called also to diagonal
variable metric methods, since a stabilizing quadratic term in form of diagonal
matrix was added to the polyhedral approximation in order to accumulate some
second order information about the curvature of the objective function.

However, the development of ‘real’ second order method has been fascinat-
ing the researchers of nonsmooth optimization during its whole history. Several
attempts have been done in order to exploit the second order subderivative informa-
tion. Already in his pioneering work [11] Lemaréchal derived a version of variable
metric bundle method utilizing the classical BFGS secant updating formula from
smooth optimization. Due to the disappointing numerical results in [12] this idea
was buried nearly for two decades. Several modifications of the variable metric
concepts have been proposed for example in [3, 6, 13, 20]. According to very
limited numerical experiments (see for example [6]) it seems that the variable
metric bundle methods works fairly well. However, when proportion the results
to the extra computational efforts needed with the full matrix algebra they do not
offer substantial advancement in numerical solution process.

More recently a new second order approach has been proposed in [15], where
the bundle-Newton method was introduced. The main difference compared to the
earlier methods was the inclusion of second order information directly to the model,
in other words the piecewise linear model was replaced by piecewise quadratic
model. In numerical tests of [15] it turns out to be very effective for quadratic type
of problems.

The aim of this paper is to compare the proximal bundle method and the bundle-
Newton method in solving hemivariational inequalities. Since the optimization
problem arising in the solution of hemivariational inequalities has a dominated
quadratic part the second order method should be a good choice. The main ques-
tion in the functioning of the method is how remarkable is the advantage of the
possible better convergence rate of the bundle-Newton method when compared to
the increased calculation demand. The numerical results indicate the superiority of
the bundle-Newton method for the problems having a quadratic nature.

The paper is organized as follows. In Section 2 we introduce the considered op-
timization problem and give some definitions needed in continuation. The Sections
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3 and 4 are devoted to the proximal bundle method and bundle-Newton method,
respectively. In Section 5 the test hemivariational inequality problem is introduced
and finally in Section 6 we give some numerical results.

2. Nonsmooth and nonconvex optimization problem

We consider the following nonsmooth and nonconvex optimization problem{
minimize f (x)

subject to x ∈ K, (P)

where the objective functionf from Rn to R is supposed to be locally Lipschitz
continuous function. The feasible setK has a more specific structure, i.e.

K = {x ∈ Rn | xl 6 x 6 xu},
wherexl andxu are the lower and upper bounds for variables, respectively. We
suppose that at eachx ∈ K we can evaluate the function valuef (x) and an
arbitrary subgradientg(x) from the subdifferential of Clarke (see [5])

∂f (x) = conv{ lim
i→∞
∇f (xi) | xi → x and∇f (xi) exists}.

Thenormal coneof K at x ∈ K can be defined (see [16]) by

NK(x) = cl

⋃
λ>0

λ ∂dK(x)

 ,
wheredK : Rn→ R is thedistance functionof K, i.e.

dK(x) = inf
{‖x − c‖ | c ∈ K}.

DEFINITION 1. Suppose thatf : Rn → R is locally Lipschitz continuous. Then
x∗ is called a substationary point of the problem (P) if

0 ∈ ∂f (x∗)+NK(x∗). (1)

Now we can formulate the following necessary optimality condition.

THEOREM 1. Every local minimizer of the problem (P) is substationary.

For the proof we refer to [16].
In the following sections we describe two methods: proximal bundle method

and bundle-Newton method for finding local minimizers (and thus substationary)
points of the problem (P). For the convergence of the methods we need the follow-
ing semismoothness assumption due to [2].
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DEFINITION 2. The functionf : Rn → R is said to be upper semismooth, if
for any x ∈ Rn, d ∈ Rn and sequencesgi ⊂ Rn and ti ⊂ (0,∞) satisfying
gi ∈ ∂f (x + tid) and ti ↓ 0, one has

lim sup
i→∞

gTi d > lim inf
i→∞ [f (x + tid)− f (x)]/ti . (2)

3. Proximal bundle method

In this section we shortly describe the ideas of the proximal bundle method for
nonsmooth and nonconvex minimization. For more details we refer to [10, 25, 16].

3.1. DIRECTION FINDING

Our aim is to produce a sequence{xk}∞k=1 ⊂ Rn converging to some local minimum
of the problem (P). Suppose that the starting pointx1 is feasible and at thekth
iteration of the algorithm we have the current iteration pointxk and some trial
pointsyj ∈ Rn (from past iterations) and subgradientsgj ∈ ∂f (yj ) for j ∈ Jk,
where the index setJk is a nonempty subset of{1, . . . , k}.

The idea behind the proximal bundle method is to approximate the objective
function below by a piecewise linear function, in other words, we replacef by so
calledcutting-plane model

f̂k(x) := max
j∈Jk
{f (yj )+ gTj (x − yj )}, (3)

which equivalently can be written in the form

f̂k(x) = max
j∈Jk
{f (xk)+ gTj (x − xk)− αkj }, (4)

with the linearization error

αkj := f (xk)− f (yj )− gTj (xk − yj ) for all j ∈ Jk. (5)

Note, that in convex case the subdifferential can be rewritten as (see [16])

∂f (x) = {g(x) ∈ Rn | f (y) > f (x)+ g(x)T (y − x) for all y ∈ Rn}.
Then it is easy to prove that

f̂k(x) 6 f (x) for all x ∈ Rn and αkj > 0 for all j ∈ Jk. (6)

In other words, iff is convex, then the cutting-plane modelf̂k is an under estimate
for f and the nonnegative linearization errorαkj measures how good an approx-
imation the model is to the original problem. In nonconvex case these facts are
not valid anymore:αkj may have a tiny (or even negative) value, although the trial
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pointyj lies far away from the current iteration pointxk and thus the corresponding
subgradientgj is useless. For these reasons the linearization errorαkj is replaced
by so calledsubgradient locality measure(cf. [8])

βkj := max{|αkj | , γ (skj )2}, (7)

whereγ > 0 is thedistance measure parameter(γ = 0 if f is convex) and

skj := ‖xj − yj‖ +
k−1∑
i=j
‖xi+1 − xi‖ (8)

is thedistance measureestimating

‖xk − yj‖ (9)

without the need to store the trial pointsyj . Then obviouslyβkj > 0 for all j ∈ Jk
and minx∈K f̂k(x) 6 f (xk), since

min
x∈K

f̂k(x) 6 f̂k(xk) = f (xk)−max
j∈Jk

βkj 6 f (xk). (10)

In order to calculate the search directiondk ∈ Rn we replace the original
problem (P) by the cutting plane model{

minimize f̂k(xk + d)+ 1
2ukd

T d

subject to xk + d ∈ K, (CP)

where the regularizing quadratic penalty term 1/2ukdT d is added to guarantee
the existence of the solutiondk and keep the approximation local enough. The
weighting parameteruk > 0 was added to improve the convergence rate and to
accumulate some second order information about the curvature off aroundxk. It
was adapted from the proximal point algorithm by [24] and [1] and was first time
used in [10] and [25].

Notice, that the problem (CP) still is a nonsmooth optimization problem. How-
ever, due to piecewise linear nature it can be rewritten as a (smooth) quadratic
programming subproblem finding the solution(dk, vk) ∈ Rn+1 of{

minimize v + 1
2ukd

T d

subject to −βkj + gTj d 6 v for all j ∈ Jk and xk + d ∈ K. (QP)

3.2. LINE SEARCH

In the previous section we calculated the search directiondk . Next we consider
the problem of determining the step size into that direction. We assume thatmL ∈
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(0,1/2), mR ∈ (mL,1) and t̄ ∈ (0,1] are fixed line search parameters. First we
shall search for the largest numbertkL ∈ [0,1] such thattkL > t̄ and

f (xk + tkLdk) 6 f (xk)+mLtkLvk, (11)

wherevk is the predicted amount of descent and it holds

vk = f̂k(xk + dk)− f (xk) < 0

due to (11). If such a parameter exists we take along serious step

xk+1 := xk + tkLdk and yk+1 := xk+1.

Otherwise, if (11) holds but 0< tkL < t̄ then ashort serious step

xk+1 := xk + tkLdk and yk+1 := xk + tkRdk
is taken and iftkL = 0 we take anull step

xk+1 := xk and yk+1 := xk + tkRdk,
wheretkR > t

k
L is such that

−βk+1
k+1 + gTk+1dk > mRvk. (12)

In long serious step there occurs a significant decrease in the value of the ob-
jective function. Thus there is no need for detecting discontinuities in the gradient
of f , and so we setgk+1 ∈ ∂f (xk+1). In short serious steps and null steps there
exists discontinuity in the gradient off . Then the requirement (12) ensures that
xk and yk+1 lie on the opposite sides of this discontinuity and the new subgra-
dient gk+1 ∈ ∂f (yk+1) will force a remarkable modification of the next search
direction finding problem. In what follows we are using the line search algorithm
presented in [16]. The convergence proof of the algorithm is assumedf to be upper
semismooth (see (2)).

The iteration is terminated if

vk > −εs, (13)

whereεs > 0 is a final accuracy tolerance supplied by the user.

3.3. WEIGHT UPDATING

One of the most important questions concerning proximal bundle method is the
choice of the weightuk. The simplest strategy might be to keep it constantuk ≡
uf ix. This, however, leads to several difficulties. Due to Theorem 4 we observe the
following:
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If uf ix is very large, we shall have small|vk| and‖dk‖, almost all steps are serious
and we have slow descent.
If uf ix is very small, we shall have large|vk| and‖dk‖, and each serious step will
be followed by many null steps.

Therefore, we keep the weight as a variable and update it when necessary. For
updatinguk we use the safeguarded quadratic interpolation algorithm due to [10].

4. Bundle-Newton method

Next we describe the main ideas of the second order bundle-Newton method. For
more details we refer to [15].

4.1. DIRECTION FINDING

We suppose that at eachx ∈ K we can evaluate, in addition to the function value
f (x) and an arbitrary subgradientg(x) ∈ ∂f (x), also ann × n symmetric matrix
G(x) approximating the Hessian matrix∇2f (x). For example, at the kink pointy
of piecewise twice differentiable function we can takeG(y) = ∇2f (x), wherex
is ‘infinitely close’ toy.

Instead of piecewise linear cutting-pane model (3) we introduce a piecewise
quadratic model of the form

f̃k(x) := max
j∈Jk

{
f (yj )+ gTj (x − yj )+

1

2
%j (x − yj )TGj(x − yj )

}
, (14)

whereGj = G(yj ) and%j ∈ [0,1] is some damping parameter. The model (14)
can again equivalently be written as

f̃k(x) = max
j∈Jk

{
f (xk)+ gTj (x − xk)+

1

2
%j (x − xk)TGj (x − xk)− αkj

}
(15)

and for allj ∈ Jk the linearization error takes now the form

αkj := f (xk)− f (yj )− gTj (xk − yj )−
1

2
%j (xk − yj )TGj(xk − yj ). (16)

Note that now even in the convex caseαkj might be negative. Therefore we replace
the linearization error (16) again by the subgradient locality measure (7) and we
remain the property (see [15])

min
x∈K f̃k(x) 6 f (xk). (17)

The search directiondk ∈ Rn is now calculated as the solution of{
minimize f̃k(xk + d)
subject to xk + d ∈ K. (CN)
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Note, that since the model already has second order information no regularizing
quadratic terms are needed like in (CP). The problem (CN) is transformed to a
nonlinear programming problem, which is then solved by a recursive quadratic
programming method (see [15]). If we denote

gkj := gj + %jGj(xk − yj ),
this procedure leads to a quadratic programming subproblem finding the solution
(dk, vk) ∈ Rn+1 of{

minimize v + 1
2d

TWkd

subject to −βkj + (gkj )T d 6 v for all j ∈ Jk and xk + d ∈ K, (QN)

where

Wk :=
∑
j∈Jk−1

λk−1
j %jGj

andλk−1
j for j ∈ Jk−1 are the Lagrange multipliers of (QN) from the previous

iterationk − 1. In calculationsWk is replaced by its positive definite modification,
if necessary.

4.2. LINE SEARCH

The line search operation of the bundle-Newton method is following the same
principles than in Section 3.2 for proximal bundle method. The only remarkable
difference occurs in the termination condition for short and null steps, in other
words (12) is replaced by two conditions

−βk+1
k+1 + (gk+1

k+1)
T dk > mRvk (18)

and

‖xk+1− yk+1‖ 6 CS, (19)

whereCS > 0 is a parameter supplied by the user.
The bundle-Newton method is using the line search algorithm presented in [15].

The convergence proof of the algorithm is assumedf to be upper semismooth (see
(2)).

5. Formulation of the problem

5.1. CONTINUOUS PROBLEM

We consider a two-dimensional laminated composite structure consisting of two
elastic laminae and an interlayer binding material under loading (see Figure 1).
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Figure 1. Laminated composite structure under loading.
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Figure 2. Nonmonotone adhesive force between laminae.

The mechanical behaviour of the binding material, the interlaminar bonding forces
versus the corresponding relative displacements of the laminae, is depicted by
Figure 2. This relation is typically nonmonotone and multivalued. Therefore, this
kind of mechanical problems lead to the hemivariational inequalities or in the en-
ergy formulation to the substationary point problems of nonconvex, nonsmooth
functionals. The similar mechanical structures have been investigated in [21, 26].

Due to the symmetry of the structure and by assuming that the forces applied to
the upper and lower part of the structure are the same it is enough to study the upper
lamina. Next, we formulate mathematically the problem. We denote by� ⊂ R2 the
upper lamina in its undeformed state. The Lipschitz boundary0 of � consists of
four nonoverlapping open subsets01, 02, 03 and04. We denote byσ = (σij )2i,j=1

the stress tensor,ε = (εij )
2
i,j=1 the strain tensor,u = (ui)

2
i=1 the displacement,
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n = (ni)
2
i=1 the outward unit normal vector to0 andS = (Si = σijnj )

2
i=1 the

boundary force.
Assuming that the deformations are small the lamina obeys the Hooke’s law of

form

σij = Cijklεkl(u), where εkl(u) = 1

2

(
∂uk

∂xl
+ ∂ul
∂xk

)
(20)

andC = (Cijkl)
2
i,j,k,l=1 is the elasticity tensor satisfying the usual symmetry and

ellipticity conditions. The equation of the equilibrium state of� is as follows:

σij,j = 0 in�, i = 1,2, (21)

since there are no volume forces.
Next, we define the boundary conditions. On01 we have given displacements

u(x) = 0 on01 (22)

and on both 02 and03 given boundary forces

S(x) = (0, F ) on02, (23)

S(x) = 0 on03, (24)

whereF is a constant force.
Furthermore, on04 we have in the tangential direction a given boundary force

S1(x) = 0 on04. (25)

On the other hand, due to the binding interlayer material it holds a nonmonotone,
multivalued boundary condition (see Figure 2) expressed by means of the subdif-
ferential∂j of a locally Lipschitz functionj

−S2(x) ∈ ∂j (u2(x)) on04, (26)

and because of the nonpenetration of the laminae a unilateral boundary condition

u2 > 0 on04 (27)

in the normal direction. Note that we have to scale by 1/2 thex1-axis of the graph
in Figure 2 in order to get the nonmonotone law of (26), because in Figure 2 we
have relative displacements of the laminae.

By employing Green–Gauss theorem and taking into account both the equilib-
rium equation (21) and the boundary conditions (22)–(27) we obtain the following
hemivariational inequality: Findu ∈ K such that

a(u, v − u)+
∫
04

j ◦(u2; v2 − u2)d0 >
∫
02

F(v2− u2)d0 ∀v ∈ K, (28)
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whereK is a set of kinematical admissible displacements defined by

K = {v ∈ X : v2 > 0 on04}, (29)

X = {v ∈ (H 1(�))2 : v = 0 on01} (30)

(H 1(�) denotes the Sobolev space),j ◦ is the generalized directional derivative of
j anda the bilinear form of the linear elasticity defined by

a(u, v) =
∫
�

Cijhkεij (u)εhk(v)d�. (31)

Due to the symmetry of the bilinear forma the potential energy of the consid-
ered mechanical system has the form:

f (u) = 1

2
a(u, u)+

∫
04

j (u2)d0 −
∫
02

Fu2d0. (32)

Then, we can formulate the following problem: Findu ∈ K such thatu is a
substationary point (cf. (1)) off onK, i.e.

0 ∈ ∂f (u)+NK(u), (33)

whereNK(u) is the normal cone to the nonempty, closed and convex setK at u.
It can be shown that the problem (28) has at least one solution (see [22]), and that
the solutions of the inclusion (33) are also the solutions of the inequality (28) (see
[19]).

5.2. DISCRETE PROBLEM

We apply the finite element approximation scheme developed in [17, 18]. Leth be
a discretization parameter related to the mesh size of the triangulationT h of� (see
Figure 3). The setK is approximated by the set of piecewise linear functions over
the triangulationTh defined by

Kh = {v ∈ Xh : v2 > 0 on04}, (34)

Xh = {v ∈ (C(�))2 : v|T ∈ (P1(T ))
2 ∀T ∈ Th, v = 0 on01}. (35)

For the approximation of the bilinear forma and the boundary integral
∫
02
F(v2−

u2)d0 we use appropriate numerical integration formulae (this is standard in the
finite element method). The nonmonotone term in (28) is approximated by the
following numerical integration formula∫

04

j ◦(u2; v2 − u2)d0 ≈
∑
i∈I

cij
◦(u2(xi); v2(xi)− u2(xi)), (36)

where{xi}i∈I is the set of the nodal points of the triangulationTh on04 and{ci}i∈I
are the coefficients of the integration formula.
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Figure 3. 32×4 triangulationTh of �.

Let us make the identificationXh with the corresponding subset ofR2n, i.e.
the displacement functionv is identified with the displacement vector of the nodal
points (n is the number of the nodal points). Then the discrete problem in the matrix
form is as follows: Findu ∈ Kh such that

uTA(v − u)+
∑
i∈I

cij
◦(ui; vi − ui) > FT (v − u) ∀v ∈ Kh, (37)

whereA is the stiffness matrix of the structure,F the (discrete) load vector andI
the set of the indices corresponding to thex2-displacements of the nodal points on
04.

Then we can formulate the discrete substationary point problem onKh: Find
u ∈ Kh such that

0 ∈ ∂fh(u)+NKh(u), (38)

where

fh(u) = 1

2
uTAu+

∑
i∈I

cij (ui)− FT u. (39)

Because of Corollary 1 of Proposition 2.3.3 in [5] and the termsj (ui), i ∈ I , are
independent of each other we have that

∂fh(u) = Au+
∑
i∈I

ci∂j (ui)− F. (40)

Now it holds that every solution of (38) is a solution of the problem (37) (see [19]).
Also due to the results in [18, 19] we know that the discrete problem (38) is solv-
able and its solutions converge in subsequences to the solutions of the continuous
problem (33).

REMARK . The functionalfh is upper semismooth. Indeed, letu, d ∈ R2n be
given. From Definition 2 of the upper semismoothness we see that it is enough to
study the restriction offh onto the lineL = {u + td : t ∈ R}, on whichfh is
smooth except finite number of points (cf. (39) and Figure 2). Iffh|L is smooth at
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u, it is smooth also on some small (one-dimensional) neighborhood ofu and the
condition

lim sup
i→∞

gTi d > lim inf
i→∞ [f (x + tid)− f (x)]/ti (41)

is trivially satisfied. On the other hand, iffh|L is nonsmooth inu, there exists
small neighborhood ofu in which u is the only nonsmooth point. Therefore,fh|L
is continuously differentiable in this set except at the pointu and the classical
one-sided derivatives exist atu implying (41).

Since the nonlinear behaviour and the constraints of the problem have an effect
only on thex2-displacements on the nodes on04, we can make our computation
much more effective by applying the method of condensation of unknowns. As-
suming thatm components corresponding to the index setI are listed first, we
have the following decomposition of the matrixA and the vectorsF andu

A =
(
A11 A12

A21 A22

)
F =

(
F 1

F 2

)
u =

(
u1

u2

)
,

whereA11 is anm × m matrix andF 1, u1 ∈ Rm. Then the elimination ofu2(∈
R2n−m) from (37) leads to the following discrete potential functional

f̃h(u
1) = 1

2
(u1)T Ãu1+

m∑
i=1

cij ((u
1)i)− (F̃ )T u1, (42)

whereÃ = A11 − A12(A22)
−1A21 called the Schur complement and̃F = F 1 −

A12(A22)
−1F 2. Hence, the eliminated substationary point problem is formulated as

follows: Findu1 ∈ Kh such that

0 ∈ Ãu1+
m∑
i=1

ci∂j ((u
1)i)− F̃ +NKh(u1), (43)

whereKh is interpreted as a set ofRm.

6. Numerical results

The optimization algorithms has been implemented in Fortran 77 and the test
runs have been performed on an HP9000/J280 (180 MHz) computer. The tested
optimization codes are presented in Table 1.

All the codes are utilizing the subgradient aggregation strategy of [8] to keep
the storage requirements bounded. The code PB is employing the quadratic solver
QPDF4, which is based on the dual active set method derived in [9], while the codes
PBL and BNL are using the solver ULQDF1 implementing the dual projected
gradient method proposed in [14].
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Table 1. Tested codes and software

Code Software Package Author(s) Method

PB NSOLIB Mäkelä Proximal bundle

PBL UFO Lukšan &Vlček Proximal bundle

BNL UFO Lukšan &Vlček Bundle-Newton

Table 2. Eliminated with discretization 16× 2

Load=26 200 kN/m2 Load=27 000 kN/m2

Code Ni Nf CPU f Ni Nf CPU f

PB 1942 2209 10.76 −0.830188 1698 8614 15.74−8.127245

PBL 207 210 1.13 −0.830189 1421 1443 3.80 −8.127215

BNL 4 5 0.69 −0.830189 23 24 0.81 −8.127245

The above optimization codes have been applied to the mechanical structure
of Figure 1 under eleven constant loadings (F=20 000, 21 000, 22 000, 23 000,
24 000, 25 000, 26 200, 27 000, 28 000, 29 000, 30 000 kN/m2). In calculation we
have used the incremental procedure: the loading of the structure is increased uni-
formly and as an initial guess for the solution of the next load it is used the solution
of the previous load. The bigger increment from 25 000 kN/m2 to 26 200 kN/m2 is
due to the fact that the structure is very sensitive to the increase of the loading be-
tween 25 000-27 000 kN/m2 where the partial (branches B–G in Figure 2) and the
complete delamination (branch G–H in Figure 2) take place. With the load 26 200
kN/m2 we can illustrate the case in which only the partial delamination occurs. We
have applied the plane stress model with the elasticity modulusE = 1.378 · 108

kN/m2, the Poisson’s ratioν = 0.3 and the thicknesst = 5 mm.
The calculated results with different discretizations are presented in Tables 2–6,

in which Ni denotes the number of iterations, Nf denotes the number of objective

Table 3. Eliminated with discretization 32× 4

Load=26 200 kN/m2 Load=27 000 kN/m2

Code Ni Nf CPU f Ni Nf CPU f

PB 2784 8627 48.45 −13.96062∗ 1248 4715 23.34 −15.21955

PBL 426 434 3.15 −0.871201 3007 3063 14.16−15.21929

BNL 13 14 1.61 −0.871203 16 17 1.70 −15.21955
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Table 4. Eliminated with discretization 64× 8

Load=26 200 kN/m2 Load=27 000 kN/m2

Code Ni Nf CPU f Ni Nf CPU f

PB 4053 13480 198.33 −17.00291∗ 1909 7411 107.00 −18.45613

PBL 799 810 31.23 −0.884754 6131 6255 85.33 −18.45483

BNL 15 16 24.71 −0.884754 14 15 24.67 −18.45613

Table 5. Eliminated with discretization 128× 16

Load=26 200 kN/m2 Load=27 000 kN/m2

Code Ni Nf CPU f Ni Nf CPU f

PB 6414 23681 1372.03 −17.93623∗ 3073 12287 939.48 −19.45147

PBL 184 188 551.16 −0.809380∗∗ 11653 11875 873.10 −19.44819∗∗
BNL 17 19 552.69 −0.888642 14 15 557.94 −19.45147

function (and also subgradient) evaluations, CPU the used total computer time in
seconds andf is the objective function value at termination. Note that the elim-
ination, the computation of the Schur complementÃ and the new load vector̃F ,
for the discretization 16× 2, 32× 4, 64× 8 and 128× 16 is taking about 0.67,
1.35, 23.1 and 545.0 seconds, respectively. The stopping criterions are chosen to be
comparable, in other words the relative accuracy in the optimal objective function
value is about 6 digits.

From the numerical results in Tables 2–6 we can conclude the superiority of
the bundle-Newton code BNL. In all cases it used less computing resources and
found the local minimum in the most reliable way. Due to the matrix operations
the individual iteration is more costly than in proximal bundle methods. However,
the total amount of iterations stays very low, and thus the used CPU time of BNL
is always less than with the other codes.

Table 6. Not eliminated with discretization 32× 4

Load=26 200 kN/m2 Load=27 000 kN/m2

Code Ni Nf CPU f Ni Nf CPU f

PB 4458 4474 156.97 −0.880013 40112 40128 1458.51−15.22886

PBL 2957 3004 40.96 −0.880011 22606 22987 312.08 −15.21907∗∗
BNL 10 12 12.27 −0.880022 14 17 17.79 −15.22891
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Table 7. Average error of the normal displacements on04 by BNL

Load=26 200 kN/m2 Load=27 000 kN/m2

Discretization (Error in mm) (Error in mm)

16× 2 0.027 2.7

32× 4 0.0094 1.0

64× 8 0.0026 0.24

128× 16 * *

Note, that the iteration number and the function evaluations of BNL do not
depend on the dimension of the problem. On the other hand, when the size of
problem is doubled, BPL needed about two times and PB about 1.6 times more
iterations and function evaluations.

When comparing the CPU times versus discretization the behaviour is nonlinear
and the multiplier is growing exponentially. We have to remember, that especially
in the large problems the elimination is taking most of the time and the differences
do not seem to be so remarkable. For example for the discretization 128× 16 the
optimization time of BNL is only about 2% of the total time.

By comparing the Tables 3 and 6 we can see the influence of the elimination; the
solution of the problem without elimination is taking nearly ten times more CPU
time than the eliminated one. Note that especially for the proximal bundle methods
the elimination is essential.

Although the codes PB and PBL are realizations of the same method, the dif-
ference in their functioning is remarkable. PBL is clearly more effective when
comparing the function evaluations and CPU times. However, it has slight diffi-
culties to reach the desired accuracy in larger problems (see the function values
denoted by∗∗ in Tables 5–6). Notice also, that PB converges to the different local
minimum with the load 26 200 kN/m2 (see the function values denoted by∗ in
Tables 3–5). When we changed the starting point to be zero in all the components
it found the same optimum as the other codes. This behaviour is due the fact that
the delamination takes place between the loads 25 000-27 000 kN/m2 making the
structure very unstable and sensitive to the increase of the load.

In Table 7 we have listed the average errors of the normal displacements on
04 with the loads 26 200 kN/m2 and 27 000 kN/m2 obtained by BNL. As an exact
solution it is used the solution obtained by the discretization 128× 16. Table 7
indicates that the applied approximation scheme has a very good convergence rate
and the results calculated by BNL are reliable.

In Figures 4 and 5 it is presented the normal displacements of the upper lamina
(the relative displacements of laminae are twice larger) and the binding forces
between laminae. Further, Figure 6 illustrates the progress of delamination: With
the load 23 000 kN/m2 there is no damage of the binding material, all the nodes
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Figure 4. Normal displacements of the interface of the upper lamina.
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Figure 5. Nonmonotone adhesive force between laminae.

are on the branch A-B. The partial delamination occurs when the load is increased
to 26 200 kN/m2, some of the nodes are on the branch C-D, and the complete
delamination when the load is greater than 27 000 kN/m2, most of the nodes are on
the branch G-H.
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Figure 6. Progress of delamination.

7. Conclusions

The solution of a hemivariational inequality can be found as a substationary point
of some nonconvex functional being composed of a dominating quadratic part and
a nonsmooth piecewise quadratic part. We have tested the functioning of different
nonconvex and nonsmooth optimization methods in the solution of a laminated
composite structure under loading when the binding material between laminae
obeys a nonmonotone multivalued law.

Due to the strong quadratic nature of this kind of problem, the bundle-Newton
method based on the second order piecewise quadratic model proves to be superior
when compared to proximal bundle method based on the first order polyhedral
approximation. Bundle-Newton method was clearly faster and more reliable, and
what is best, the iteration number and the function evaluations of bundle-Newton
method do not depend on the dimension of the problem. The same trend can be
seen also in the academic tests of [15].
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